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The relaxation of an initially non-uniform gas to equilibrium is studied within 
the framework of the kinetic theory of gases. The macroscopic gas properties 
are taken to depend on one spatial dimension as well as the time. The amplitude 
of the non-uniformity is assumed to be small with a length scale large compared 
with the mean free path, and the Krook model of the Boltzmann collision integral 
is employed. 

By applying multi-time scale perturbation methods to this reduced problem, 
uniformly valid analytical solutions for the macroscopic velocity, density and 
temperature are obtained. The macroscopic equations appropriate to each stage 
of the relaxation process are obtained in a straightforward and unambiguous 
manner. The distribution function obtained is shown to be a re-expansion of the 
Chapman-Enskog solution of the Krook equation, with additional terms ac- 
counting for the relaxation of the initial conditions to a near equilibrium form. 
The results indicate that the uniformly valid frst approximation to the macro- 
scopic velocity, density and temperature can be obtained from the Navier- 
Stokes equations, but Ghat no purely macroscopic set of equations will suffice 
for the determination of higher approximations. 

1. Introduction 
The initial-value problem in the kinetic theory of gases represents one of the 

oldest and most interesting problems in gasdynamics. The molecular motion is 
described statistically by a particle distribution function f (x, V, t )  defined so 
that the number of molecules in a volume element d3x about the point x in a 
velocity range d3v about v a t  an instant t is given by fd5xd”v. The distribution 
function satisfies Boltzmann’s equation (Chapman & Cowling 1961). The general 
solution of the Boltzmann equation, given f(x, v, to)  at some initial instant to, 
has never been obtained. 

However, the problem simplifies considerably when the initial distribution of 
particles has a spatial length scale which is long compared with the mean free 
path (defined as the average distance that a particle will travel before colliding 
with another). I n  this case the motion is known to be governed by macroscopic 
equations, the initial conditions relaxing to a nearly equilibrium state (locally 
in space) after a few collisions. The macroscopic equations obtained depend upon 
the method of analysis used and the degree of accuracy required of the answer. 
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(See Grad (1967) for a survey of approaches to this and other questions in kinetic 
theory . ) 

In  the present work three important simplifications to the small Knudsen 
number (the ratio of the mean free path to the relevant length scale) initial- 
value problem are made. First, the Boltzmann equation is replaced by the 
Krook statistical model (Bhatnagar, Gross & Krook 1954) as the governing 
equation for the distribution function. Second, the initial disturbance is 
assumed to be a small perturbation of a pre-existing equilibrium state. (The 
equations are not linearized, however.) Finally, the motion is assumed one- 
dimensional. The multi-time scale technique is then applied to the reduced 
problem. McCune, Morse & Sandri (1963) applied the method to the general 
initial-value problem for the Krook equation and obtained considerable insight 
into the relationship between many of the approaches referred to above. How- 
ever, when the method is applied to the reduced problem, it is possible to obtain 
a uniformly valid solution for the macroscopic variables of interest (number 
density, macroscopic velocity and temperature). Moreover, the extent to which 
the macroscopic equations determine the motion emerges in an unambiguous 
way. In  fact the one-dimensional macroscopic solutions themselves do not 
seem to have been obtained in the general problem shown below. 

2. Mathematical formulation 

one-dimensional unsteady flow : 
The starting point of the analysis is the Krook kinetic model specialized to a 

Here f (x, v, t )  is the particle distribution function. The particles each have a mass 
m and no internal degrees of freedom. The macroscopic quantities appearing are 
number density n, velocity u, and temperature T. They are defined as moments 

( 2 )  

off as follows: 

i n = Jfdsv, 
nu = Jvfc~v,  

3nkT = 1 im(v - u ) ~  f d3v. 

The gas has a microscopic collision frequency m ( T )  which can be chosen to 
reproduce the viscosity of the gas whose motion is being modelled; k is Boltz- 
mann’s constant. For a one-dimensional motion it is sufficient to consider two 
components of velocity. Let the component in the direction of increasing x be u, 
and that in the plane of constant x (whose direction is determined by the initial 
condition) be w. 

Now consider the initial-value problem. In  the undisturbed state the gas is at 
rest with number density no and temperature To. In  this state 
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The gas is then disturbed so that the departure off from a, is characterized by 
an amplitude parameter e < 1. The length scale associated with the disturbance 
is large compared with the mean free path I = (kTo/m)~(no+!'o))-l. Let the length 
scale L be 16-1; where 6 < 1 is the Knudsen number. 

The appropriate non-dimensional variables are then 

f = n,(m/kTo)@Y5, Y, s, € 2  61, 

(9 = n,,(m/k~,)W', Y = [~ / (~ ; r r@)t ]exp  I- (1/20)(g-U)2], 

T = T,@(y,s,e, S), n = noN(y,s ,e ,  S ) ,  

u 3 (u, w, 0) = (kT,/m)*{U, W ,  0) = (kT,/m)*U(y, s,e, S), 

MTT) = n o K ( T 0 )  ws, y, GJ), 

v = (vz, v,, 7/31 = (kT,/nz)*{k, q, C) 3 (kTo/m)*E. 

5 = (kT,/m)t [n,K(To)  bl-ly, t = (n,K(TO))-ls, 

Equations (1) and (2) now become 

aF aF -+at- = Q(Y - F ) ,  
as ay 

The macroscopic conservation laws are obtained by multiplying (3) by 1, <, 7 and 
&(t - U)2: then integrating over g we obtain in corresponding order 

These equations are, of course, the conservation of mass, longitudinal and 
transverse momentum, and energy respectively. The normal and transverse 
components of the pressure tensor (P, and pt respectively) and the heat flux 
vector Q are given by 

( 5 )  i 
P, = 1 (5- U)2Fd3g, 

Q = 1 $F(g - U)2 (&- U)d35.  
4 = 1 (6 - U )  (q - 'v) Pd3E, 

The initial-value problem may now be posed as follows: 

F = (21~)-#  exp [ - i f23  + eZ(5, y) at s = 0. 
18 F L M  5 0  
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The first term is the dimensionless form of (Do. The perturbation 2 is assumed 
to vanish exponentially in for large It]. Moreover, the disturbance is also 
assumed to be initially bounded spatially in a manner that will be made clear 
as the analysis progresses. 

The problem contains two small parameters 6 and 6, and a perturbation analysis 
is indicated. It is both convenient and constructive to consider 6 in the form 

6 = €19. 

The parameter 9 will ultimately be seen to play the role of a Reynolds number 
in the macroscopic motion. When this choice for 6 is made, the motion evolves 
on three different time scales. The kinetic equation clearly evolves in a non- 
trivial manner on the s scale. Macroscopic quantities must also evolve on a 
scale such that $ = (./a) s is O( 1) in magnitude since the initial conditions have 
a length scale (s/a)-l longer than the mean free path. Finally, there is a time 
scale such that 7 = (e*/B?) s is O( 1) in magnitude. It is on this time scale that the 
decay to an equilibrium state required by the irreversibility of the kinetic 
equation occurs. Non-linear effects will also occur on the 7 scale. 

The perturbation method appropriate to this type of problem is the multi- 
time scale technique (see e.g. Carrier & Pearson 1968 or Cole 1968). The depen- 
dence of F on its parameters is assumed in the form 

Since q5 and r are linearly related to s, the time derivatives are transformed to 

a a € a  ~ 2 a  

as as g a +  war* -+-+--+-- 

The initial conditions must now be applied at  s = q5 = r = 0. With these modi- 
fications, F (and hence all moments of F )  is expanded in a power series in E ,  

each of whose coeflticients depends on all other parameters. The system of equa- 
tions is rendered determinate by requiring that all perturbations are bounded 
and the first-order perturbation is the dominant term everywhere for any finite 
value of [ 51. The expansion is thus assumed in the form 



On the initial-value problem in the kinetic theory of gases 275 

The revised form of (3) and (4) is now 

The perturbation equations are now obtained by the substitution of (6) in ( 7 )  
and equating the coefficient of each power of e to zero. The initial condition is 

The initial conditions on all macroscopic quantities are obtained by taking the 
appropriate moments of F(5,  0, 0, 0, y). 

F(l)(E,, O , O ,  0,y) = Z(5,y); F(")(5,0,0,0, y) = 0 (n = 2,3,  ...). 

3. The early stages of the motion 
The first-order equations in the expansion defined above are 

a m / a s  + ~ ( 1 )  - y(1) = 0, 

a p ,  u(1), o(l))/as = 0, 

Y(1) = (2n)-#exp ( & ~ z ) { I v ( ~ ) + ~ . u ( ~ ) +  (852-9) a@)]. 

U(1) = U(l)(@, r, y); 

The solutions are 

N(1) = XI)(#, r, y);  

F(1) = Y ( ~ ) - I - ~ - s ~ ( ' ) ( $ , T ,  5,  y). 

O(1) = @ ( I ) ( $ ,  7, y); 

To a first approximation the velocity, temperature and density does not 
change from their initial values while the distribution function relaxes to a 
Gaussian form. F(1) satisfies an evolution equation to be determined at a later 
stage in the analysis. The components of the pressure tensor and heat flux 
vector are 

(9) 
P.1) = NCO + @(l) + 6-5 $nu 2d3 , I c c  
pt'l) = e - S j  t~F(1) # E Q ( 1 )  = e - b J 9 4 2 , 5 9 T ( 1 )  d35. 

We now consider the second approximation. The conservation laws are 
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When (8) and (9) are substituted into (lo), it is clear that the only way to avoid 
terms growing linearly with s in N@),  U(2) and is to require the terms inde- 
pendent of s to vanish in each of (10). 

The first three of (11) are the one-dimensional acoustic equations. The solutions 

The results at this stage may be interpreted as follows. The distribution 
function loses all memory of its initial condition after a few collisions, relaxing 
to local thermodynamic equilibrium as represented by the linearized Gaussian 
distribution "(1). The ' conserved' quantit,ies N ,  U and 0 do not vary appreciably 
from their initial values during this period. On the time scale characterized by 
values of q5 which are O( l),  the longitudinal motion is acoustic, while the trans- 
verse motion has not yet changed from its initial state. The ultimate evolution 
of the motion for a time scale characterized by non-zero values of 7 will be 
considered next. The result will be a system of partial differential equations 
governing the evolution of J(l), G(l) and H(Q. 

4. The determination of the distribution function 

order quantities in some detail. From (9), (1 0 )  and (1 1) 
To proceed further it is necessary tjo consider the behaviour of the second- 

iV(2) = N(2)(#, 7,  g) ,  \ 

The subscript M denotes the part of each variable which evolves solely on 
macroscopic time scales. The second-order kinetic equation is 



We first consider (14) as a function of s. Unless S = 0, Pc2) will contain a term 
proportional to ( s / 9 )  rs. Thus, when s is O(98/e) (i.e. when Q is O( 1))  ( e / 9 )  aP(2)/8s 
will be as large as aP(l)/as. Avoiding this breakdown in the perturbation scheme 
then produces the evolution equation for F(1): 

It is easy to show that 9(l) has the required property that 

J 9(1)( 1,5, 452) a35 = 0. 

J 9(1)( 1, g, 452)  d35 = [n, u, 81. 

Let the appropriate moments be denoted by 

Taking the corresponding moments of (15) gives 

an/aQ + 9 W ) n  + aupy = 0, 

a q a @  + g w ) U  = 0, 

aepq + 9 Q ( W  = 0. 

The last two of these equations may be formally solved 
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If uo and So are independent of r, then u and I9 are zero; whence 

Thus n vanishes also if no is independent of r. The dependence on r of the quan- 
tities no, u0, and 0, is determined by the homogeneous solution Fg of (15) 

F& = A ( ~ ) ( E ,  ry - exp { - a y e ‘ ,  7, y + i~+’ - 9) d q ~ l  J 
-N1)(g, 0 ,  y) - Z(5, y) -YW,  030, y). 

It is shown in the appendix that A(1) may be chosen to be independent of r without 
introducing any inconsistencies in the perturbation scheme. This choice leads to 
u,,, no and 8, which are independent of r and thus zero. Since the primary purpose 
of this paper is to determine the behaviour of N(1), U(1) and O(l), the properties 
of F(1) will not be pursued further here. 

The solution for F(2) may now be written as 

P ( 2 )  = e - 5 9 ( 2 ) ( < ,  4, r, y) +Y$j 

This result, together with the expression (8) for F(U, is closely related to the 
Chapman-Enskog approximation to the distribution function (Chapman & 
Cowling 1961). The Chapman-Enskog theory assumes 6 < 1 but places no 
restrictions on e (6 is effectively the Knudsen number for the model gas). N ,  U, 
and 0 are not formally expanded but P,, 4, Q and all time derivatives are 
expanded in a series in IS which requires use of the conservation laws to remove 
all time derivatives. The first two terms in the expansion applied to  the Krook 
equation are 

1 au P = Y - ---Y [(g- u)Z-$(g- U ) 2 ]  -- 
N Q  ” o ay 

If (17) is now expanded in a series in E with terms of O(e2) retained: then the 
result obtained differs from 

in two respects. First, there is no description of the relaxation of the initial 
conditions to near local thermodynamic equilibrium. I n  addition, the second- 
order contribution of Y is and not Y@. These are both consequences of the 
fact that the Chapman-Enskog procedure cannot describe the evolution of the 
motion from an arbitrary initial state. Thus, that part of U2), N 2 )  and O(2) that 
does not evolve solely on macroscopic time scales is not accounted for. 
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The result (16) may now be used to evaluate the e2 contributions to pressure 
tensor and heat flux vector. They are 

At  this point the role of the parameter 99 as the Reynolds number is clear. 
Consider the part of Pi2) that survives after a few collision times 

1 a 1 V  1 1 m t aW 
9~ ( kTo 1 =--. ax 

7* p p  = - - = - - - = - - - - 
nokToe2 W ay 

Equating the shearing stress T* to pa W/ax gives 

9 = e(kTo/m)dmnoL/p. 

But e(kTo/m)t is the magnitude of the macroscopic velocity, mnO is the ambient 
density, and L = 16-1 the length scale of the initial disturbance. Hence 9 is a 
Reynolds number. An expression for p is obtained by noting that 

3 (€18) = €L[?boK(T0)] (m/kTo)&. 

Equating the above expressions for 99 gives 

AT,) = kTo/K(To). 

This expression is often used to obtain K ( T ~ )  in terms of a given y(T,). An ex- 
amination of P:2) gives the same expression for p (as it must) and no bulk viscosity, 
while equating the macroscopic part of the heat flux vector to - h(aT/ax) (where 
h is the thermal conductivity) reveals 

P, = [p (FO) /A(TO)]~k /m = 1. 

This is the well-known property of the Krook model gas; a Prandtl number one 
for any form of K(T~).  

5. The uniformly valid macroscopic behaviour 
Now consider the €3 terms in the conservation equations: 
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Substituting (13) and { 18) into (19), and suppressing secular terms in s yields the 

Equations (20) are exactly what would be obtained from the Navier-Stokes 
equations if all dependence on the kinetic time scale variable s were omitted and 
(Ug, @Ti) were replaced by (W), a@)). It is, of course, necessary to put the 
specific heat ratio y equal to 5, and P, equal to unity. 

Up to this point only the kinetic time scale has been studied when suppressing 
the secular terms in the solutions. The elimination of such terms from the 
solutions to (20) will now determine W), and @(l) uniquely for all times. 
First consider the third of (20). The equation can formally be integrat,ed as 

If U(l)(O, 0, y) vanishes sufficiently rapidly y+ & co, then 

is finite. Equations (12) then ensure that the first term in (21) is finite as 4 --f 00. 

Hence, for W$?) t o  be bounded for all $, 

The transverse or shear velocity simply diffuses on the viscous t,ime scale 
7\92. The uniformly valid first approximation is then 

a 

W*) = 1 dz W(l)(O, 0, z )  exp [ - w(z - ~ ) ~ / 4 7 ]  (.@/277r)). (23 1 
- m  

We next eliminate aU$)/ay between the first and last of (20), 



On the initial-value problem in the kinetic theory of gases 281 

contain terms proportional to H ( ~ ) ( T ,  y). H(l) plays the same 
role in (24) that W(l) did in (21). Applying essentially the same arguments yields 

Both N(1) and 

aHci) 1 
(25) ----- - 0. 

a7 9 ay2 

The non-isentropic part of the longitudinal motion is purely diffusive. The 
diffusion coefficient is (98)-1 for an analysis starting from the Navier-Stokes 
equations. The solution to (25) is 

m 
N'1) = [#@(l)(O, 0, z )  - N(l)(O,O, z ) ]  ( 9 / 2 7 ~ 7 ) *  exp [ - 9 ( z  - y)2/4r].  (26) 

In  order to determine J( l ) (r ,r)  and G ( l ) ( v , ~ )  it  is convenient to have (20) in 
characteristic form. Multiplying the continuity equation in (20) by t, the energy 
equation in (20) by !j and adding, we have 

-a3 

Next multiplying the longitudinal momentum equation in (20) by (3)9 and 
adding this to (27), we get 

We now consider a transformation of variables, replacing (#I, y) by ( r ,  u), 

y = Q(r + v); # = &(+)*(cr- r ) ,  

When (12) is substituted into (28) it  takes the form 

Provided that N(1) and @(I) are bounded initially in the same sense as U(1), 

then 
Soum, r ,  7)ar 

is finite for all cr. The quantities U B ,  @% and N(2) can then be bounded for all CT - 

only if 
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This is, of course, Burgers’ equation, specialized to the case y = 4, P, = 1, and 
no bulk viscosity. The same procedure may be used to show that 

The solution and application of Burgers’ equation to problems in which either 
J(l) or G(l) was present separately has been discussed by Lighthill (1966), parti- 
cularly when 9 is large. (Note that (30) becomes identical with (29) when CT is 
replaced by - c.) The solutions to the initial-value problem are given by 

J(’)(T, 7 )  = (3/9?)  8 (log R(r, T ) ) / & ,  

m 

R(r, T )  = 1 R(z, 0 )  (9/2m)+exp [ - W ( z  - Y ) ~ / ~ T ]  dz, 

R ( T ,  0) = exp [:/:dz [ ~ ( l ) ( o ,  o , z )  + (g)a (w)(o, 0, z )  + W(O, 0, .))I}, 

--m 

G(l)(CT, T )  = - (3/9?)  a log L( CT, T ) / ~ C T ,  

m 

~ ( a ,  7 )  = 1 ~ ( z ,  0) (9/2777)4 exp [- g(.z - y ) 2 / 4 7 1  ax, 
-m 

The uniformly valid solution may thus be briefly described as follows. The 
distribution function relaxes to near local thermodynamic equilibrium after a 
few collision times; the departure from local equilibrium then being described 
correctly by the Chapman-Enskog procedure. The first approximation to the 
longitudinal motion obeys the acoustic equations initially. However, the motion 
eventually breaks into two propagating non-linear waves which ultimately 
decay through the action of viscosity and thermal conductivity, and an ‘entropy’ 
disturbance which diffuses very slowly due to the conductivity of the gas. The 
transverse motion diffuses over the same time scale, this time owing to viscosity. 

The analysis presented here can be applied directly to the Navier-Stokes 
equations; it can be applied to flows in more than one dimension, and to a flow 
with boundaries. These topics will be considered in subsequent papers. 

Finally, it should be pointed out (if it is not already obvious) that no attempt 
has been made to obtain a result that is uniformly valid for large values of ?& 
There are two reasons for this. First, it is clear, from the form of the expressions 
obtained for F ,  that the macroscopic consequences of any such result would 
imply corrections of order e--l’c. Second, the Krook model was set up specifically 
to focus on the macroscopic quantities N ,  U, 0 and makes no pretence of giving 
an accurate representation of F in velocity space. Hence it was assumed through- 
out that interest is confined to finite values of g. 

This work was supported in part by the National Science Foundation under 
Grant NSF-GK-1827, and by the Division of Engineering and Applied Physics, 
Harvard University. 
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Appendix 

the equation for F(3) 
The final determination of P(l) comes from the suppression of secular terms in 

The manner in which each quantity depends upon s may be shown explicitly 
in a notation as follows: 

FZl) = /pS(l) +y(1), P(2) = e - 8 3 a 2 ) + J 7 ( 3 ,  

s $ ~ )  = w2 e-s + Q f j  , Y(3) = e-s$3 + Y$), 

Y@) = e-8q+2 +!I?$$. 

Substituting this into (A 1) and suppressing secular terms in s leads to an in- 
homogeneous equation for F 2 )  

In  the present notation, the equation for F1) (equation (15) above) is 

Now, remembering that Q(l) = N(l)+ (1/1c,,) (d~,/dT,)  W, the assumed form of the 
initial conditions ensures that 

As a result, all the inhomogeneous terms in (A 2)  vanish as $ approaches infinity 
along the characteristics of the partial differential equation. F@) is then h i t e  
for all $ on each characteristic, and there is no secular behaviour to suppress. 
Hence A(I) may be taken to be independent of T. 
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